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1. Introduction 

  An important key to making better predictions of tropical cyclone (TC) is having an 

understanding of the forecast errors in current predictions. Subjective and objective verification 

of TC forecasts give evidence regarding the accuracy and performance characteristics of TC 

forecasts and warnings. Verification analyses diagnose and quantify the systematic and random 

errors so that improvements can be made to operational forecasting methodologies and to the 

underpinning numerical models. 

  This report is primarily about the performance of typhoon forecast over western North Pacific 

in 2015. We start with a short discussion of best track datasets, which are the first requirement 

for verifying TC forecasts. The next section describes deterministic forecast methods, which will 

be evaluated here including subjective methods, global models and regional models. And then, 

we will evaluate the cyclone track, genesis, intensity forecast. In last part, the track forecast 

performance of seven ensemble prediction system will be evaluated. 

2. Best track datasets 

Currently, four agencies provide their own TC best track analyses for the WNP region: 1) 

Shanghai Typhoon Institute of China Meteorological Administration (STI/CMA, dataset can be 

found at http://tcdata.typhoon.gov.cn/en/index.html), 2) the Japan Meteorological Agency 

(JMA) Regional Specialized Meteorological Center (RSMC) in Tokyo (RSMC-Tokyo, dataset can 

be found at http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html), 

3)Joint Typhoon Warning Center (JTWC, dataset can be found at 

http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/), 4)Hong Kong 

Observatory (HKO, dataset can be found at http://www.weather.gov.hk/publica/pubtc.htm). 

Table.1 provides the data period, characteristics and wind averaging time information of 

these four best track datasets. It should be noted that the TC position, intensity and 

structural information usually differ among those agencies due to the lack of sufficient 

surface observations for TCs, as well as the different techniques used to estimate the 

position and intensity of a TC. Thus, differences in TC forecast performance may be obtained, 

depending on the best-track dataset used as a reference. As the typhoon center in 

RSMC-Tokyo is the regional center that carries out specialized activities in analysis and 

forecasting of WNP TCs within the framework of the World Weather Watch (WWW) Program 

of WMO, in this verification report, we’ll use RSMC-Tokyo best track-dataset as the 

reference. 

Table.1. Descriptions of western North Pacific best-track datasets.  

Agency Period Characteristics Wind 

RSMC 
Tokyo 

1951 to 
present 

Includes extratropical cyclone stage, longitude, latitude, MCP and 
TS markers since 1951; MSW and typical severe wind radii since 
1977 (without TD cases). 

10 min 

CMA 1949 to 
present 

Includes sub-centers, some double eyewall cases/coastal severe 
wind of landfalling TCs (until 2004); includes TD cases; extratropical 
cyclone stage; longitude, latitude, MSW and MCP since 1949. 

2 min 

HKO 1961 to 
present 

Includes TD cases; longitude, latitude, MSW and MCP since 1961 
(extratropical cyclone stages are not marked). 

10 min 

JTWC 1945 to 
present 

Includes TD cases; extratropical cyclone stage since 2000; 
longitude, latitude, and MSW since 1945; MCP and TC size 
parameters since 2001. 

1 min 

http://tcdata.typhoon.gov.cn/en/index.html
http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html
http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/
http://www.weather.gov.hk/publica/pubtc.htm
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3. TC position and intensity forecast data 

In this report, the TC position and intensity forecast results from five subjective methods, 

six global models and three regional models are evaluated. These totally 14 methods are 

deterministic forecast guidance, detail explanations including their abbreviations, short 

description and source agencies are listed in Table.2. 

Table.2. Details of deterministic forecast guidance 

Category Abbreviation Full name or short description Source agency 

Subjective 

method 

(5) 

CMA-sub China Meteorological Administration  CMA 

JMA-sub Japan Meteorological Agency JMA 

JTWC-sub Joint Typhoon Warning Center JTWC 

KMA-sub Korea Meteorological Administration KMA 

HKO-sub Hong Kong Observatory HKO 

Global 

NWP 

model 

(6) 

CMA-T639 Global spectral model of CMA at a resolution of T639L60 CMA 

ECMWF-IFS Integrated Forecasting System of ECMWF ECMWF 

KMA-GDAPS Global Data Assimilation and Prediction System of KMA KMA 

JMA-GSM Global Spectral Model of JMA JMA 

NCEP-GFS Global Forecast System of NCEP NCEP 

UKMO-MetUM Unified Model system of UKMO UKMO 

Regional 

NWP 

model 

(3) 

BOM-ACCESS 

Tropical cyclone model in the Australian Community Climate 

and Earth-System Simulator Numerical Weather Prediction 

systems 

BOM 

STI-GRAPES 
Regional TC-forecasting model based on the Global/Regional 

  Assimilation and PrEdiction System (GRAPES) 
STI/CMA 

CMA-TRAMS 
Tropical Regional Atmosphere Model for the South China Sea 

based on GRAPES 
ITMM/CMA 

4. TC track forecast verification 

 4.1 Deterministic forecast 

TC track error is defined as the great-circle difference between a TC’s forecast center 

position and the best track position at the verification time. TC Track errors typically are 

presented as mean errors for a large sample of TCs, as in Fig.1, which shows mean track 

errors for each subjective methods, global models and regional models at the lead time 

levels of 24, 48, 72, 96 and 120h. The detail numerical values of track error which related to 

Fig. 2 are list in Table.3. It shows that the track errors at the lead time of 24h are generally 

less than 100km for most methods and some global models’ mean track error at 120h are 

less than 300km, such as ECMWF-IFS and UKMO-MetUM. 



Fig.1. Mean track errors of subjective methods, global models and regional 

24h(red), 48h(yellow), 72h(violet), 96h(green) and 120h(gray) in 2015.

Table.3. Average track error for each method 

Method      
Lead times

Subjective 

Methods 

Global NWP 

Models 

KMA

UKMO

Regional NWP 

Models 

B

CMA

  An alternative approach to examining the average errors is to consider the distributions of 

errors, as in Fig. 2. In this 

errors in track forecasts from 2010 to 2015 for five global models.

distributional approach not only shows the entire performance of each model

forecast at each lead time, but also provides a straightforward method of

annual progress of each global model.

uncertainty in verification measures through confidence intervals and paired statistical tests. 

And it can provide a consistent set of results that allowed the forecasts from the various 

models to be compared and fairly evaluated. In Fig.2, it clearly shows that stepped decreases 

in the values of each quantile were made at every lead time level from 2
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Mean track errors of subjective methods, global models and regional models at the lead time levels of 

(red), 48h(yellow), 72h(violet), 96h(green) and 120h(gray) in 2015. 

Average track error for each method at 24, 48, 72, 96 and 120h lead time levels in 201

Lead times
 24h 48h 72h 96h 

CMA-sub 65.0(640) 114.9(537) 170.3(441) 241.2(359)

JMA-sub 66.7(639) 112.6(539) 162.6(447) 248.7(361)

KMA-sub 78.3(634) 125.6(536) 175.7(441) 254.2(360)

JTWC-sub 72.1(612) 112.7(512) 169.7(426) 238.1(347)

HKO-sub 69.4(251) 120.0(196) 176.5(142) 223.3(96)

ECMWF-IFS 56.3(305) 93.2(261) 146.2(212) 206.4(171)

NCEP-GFS 66.6(414) 119.1(355) 176.5(289) 251.0(234)

JMA-GSM 79.9(638) 133.2(540) 209.1(443) / 

CMA-T639 109.7(46) 198.5(36) 307.1(28) 449.6(20)

KMA-GDAPS 84.3(207) 138.9(173) 206.5(142) 505.4(116)

UKMO-MetUM 69.6(315) 114.5(269) 158.1(223) 209.2(179)

BOM-ACCASS 92.3(300) 161.9(254) 239.1(208) / 

CMA-TRAMS 71.0(252) 115.1(211) 178.4(169) / 

STI-GRAPES 99.8(423) 175.6(211) 288.5(274) / 

An alternative approach to examining the average errors is to consider the distributions of 

example, box plots are used to summarize the distributions of 

errors in track forecasts from 2010 to 2015 for five global models. Such a track error 

distributional approach not only shows the entire performance of each model

time, but also provides a straightforward method of understanding the 

annual progress of each global model. This methodology was developed to evaluate the 

uncertainty in verification measures through confidence intervals and paired statistical tests. 

nd it can provide a consistent set of results that allowed the forecasts from the various 

models to be compared and fairly evaluated. In Fig.2, it clearly shows that stepped decreases 

in the values of each quantile were made at every lead time level from 2010 to 2015, and the 

 

s at the lead time levels of 

 

in 2015 (Unit: km) 

 120h 

(359) 326.2(287) 

(361) 354.0(287) 

(360) 346.9(287) 

(347) 334.1(273) 

223.3(96) 367.2(58) 

(171) 283.0(135) 

(234) 360.0(188) 

/ 

(20) 593.6(15) 

(116) 923.6(81) 

(179) 281.0(143) 

/ 

/ 

/ 

An alternative approach to examining the average errors is to consider the distributions of 

summarize the distributions of 

Such a track error 

distributional approach not only shows the entire performance of each model’s track 

understanding the 

This methodology was developed to evaluate the 

uncertainty in verification measures through confidence intervals and paired statistical tests. 

nd it can provide a consistent set of results that allowed the forecasts from the various 

models to be compared and fairly evaluated. In Fig.2, it clearly shows that stepped decreases 

010 to 2015, and the 
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forecast accuracy at 48h (72, 96 and 120h) in 2015 were almost close to or beyond the 

forecast accuracy at 24h (48, 72 and 96h) in 2010. Anyway, it should be noted that this is not 

necessarily a conclusive comparison because the storms in 2010 and 2015 were not the 

same. 

  

  

 

Box plots show specific quantiles and other statistics 

used to represent a distribution.  The bar in the 

middle of the plot represents the median value, the 

lower and upper ends of the boxes represent the 25
th

 

and 75
th

 quantile values. The bars below and above the 

box represent the non-outlier extreme values, and the 

specific circles represent the outliers. 

Fig.2. Box plots for representing the distributions of track errors for TC track forecast from 2010 to 2015. 

 Fig.3 shows the track forecast skill score at the lead time levels of 24 and 48h for subjective 

method, global and regional models from 2010 to 2015. All the forecast methods obtained 

positive skill indicating the forecast accuracy of subjective methods, global and regional 

models are better than climatic persistence method in the last 6 years. 
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Fig.3. Track forecast skill score trend at the lead time level of 24h (left) and 48h (right) for subjective methods, 

global models and regional models. 

  A new approach called the Track Forecast Integral Deviation (TFID) integrates the track 

error over an entire forecast period (Yu et al., 2013). Fig.4 shows the TFID annual 

distributions from 2010 to 2015 for ECMWF-IFS, NCEP-GFS, CMA-T639 and UKMO-MetUM at 

the lead time levels of 24, 48, 72, 96 and 120h. These TFID diagrams show a clearly decrease 

trend for most global models, indicate that the TC forecast tracks became increasingly similar 

to the observation. 

  

  

Fig.4. The same as Fig.2, but for track forecast integral deviation (TFID). 

Fig.5 is the polar scatter plots which depicting the mean combined direction and 

magnitude errors around the actual storm location for global and regional models at 

different lead time levels in 2015. Each models’ systematic biases of track forecast are 
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showed clearly through the Fig.5. The numbers with different colors denote annual mean 

locations which relative to actual typhoon locations which obtain from best track dataset. 

Plots like those in Fig.5 provide information that is useful for pre-estimate the bias of a 

certain method. 

  

Fig.5. Polar scatter plots depicting the mean combined direction and magnitude errors around the actual storm 

location for each method at different lead time levels in 2015. 

 

  

  



Fig.6. Examples of track error-rose diagram 

  Another useful tool to evaluating the systematic bias of a certain objective track forecast 

method is name “Track Error Rose

reference. Fig.6 shows the examples of track TER to represent the direction and magnitude 

distributions of track errors from six global models at the lead time level of 72h

this example of TER diagram, each color bar represents different magnitude of track error, 

and the length of alignment of color bars represent the proportion of each azimuth angles. 

The TER diagram reveals the track error distribution (both the error ma

percentage of sample size) at each azimuth angle.

4.2 EPS forecast 

Seven ensemble TC forecast systems from TIGGE are evaluated below

details description of these EPSs. To evaluate the performance of TC track forecast of each

EPS, we first treat the ensemble forecasts as deterministic by summarizing the ensemble 

using the mean applied to the members.

seven EPSs. Fig.7 indicates that ECMWF

2015. The ensemble mean track error at the lead time level of 120h for both ECMWF

and UKMO-EPS are less than 300km.

Fig.7. 
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rose diagram (TER) to represent the direction and magnitude distributions of track 

errors. 

Another useful tool to evaluating the systematic bias of a certain objective track forecast 

Track Error Rose”. TER uses the same conception of “wind rose

reference. Fig.6 shows the examples of track TER to represent the direction and magnitude 

distributions of track errors from six global models at the lead time level of 72h

this example of TER diagram, each color bar represents different magnitude of track error, 

and the length of alignment of color bars represent the proportion of each azimuth angles. 

The TER diagram reveals the track error distribution (both the error ma

percentage of sample size) at each azimuth angle. 

Seven ensemble TC forecast systems from TIGGE are evaluated below. Table.4

details description of these EPSs. To evaluate the performance of TC track forecast of each

EPS, we first treat the ensemble forecasts as deterministic by summarizing the ensemble 

using the mean applied to the members. Fig.7 shows the ensemble mean track error for 

indicates that ECMWF-EPS, UKMO-EPS and NCEP-GEFS are the top 3 E

he ensemble mean track error at the lead time level of 120h for both ECMWF

EPS are less than 300km. 

 Ensemble mean track error for seven EPSs in 2015. 

 

to represent the direction and magnitude distributions of track 

Another useful tool to evaluating the systematic bias of a certain objective track forecast 

wind rose” diagram as 

reference. Fig.6 shows the examples of track TER to represent the direction and magnitude 

distributions of track errors from six global models at the lead time level of 72h in 2015. In 

this example of TER diagram, each color bar represents different magnitude of track error, 

and the length of alignment of color bars represent the proportion of each azimuth angles. 

The TER diagram reveals the track error distribution (both the error magnitude and 

. Table.4 listed the 

details description of these EPSs. To evaluate the performance of TC track forecast of each 

EPS, we first treat the ensemble forecasts as deterministic by summarizing the ensemble 

shows the ensemble mean track error for 

GEFS are the top 3 EPSs in 

he ensemble mean track error at the lead time level of 120h for both ECMWF-EPS 
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Table.4. Details of ensemble forecasts guidance 

Model name ECMWF-EPS JMA-TEPS JMA-WEPS KMA-GBEPS MSC-CENS NCEP-GEFS UKMO-EPS 

Resolution 
TL639 (0-10d) 

TL319 (10-15d) 
TL319L60 TL319L60 T213L40 0.9° T126L28 

 

Data 

resolution 
\ 0.5625° 0.5625° 0.5625° 1° 1° 

 

Members 51 11 51 24 21 21 24 

Perturbation 

method 

Singular 

Vector 
SVD SVD Bred Vector 

Ensemble 

Kalman 

Ensemble 

Transform  

Forecast time 
00:00 

12:00 

00:00 

12:00 
12:00 

00:00 

12:00 

00:00 

12:00 

00:00 

06:00 

12:00 

18:00 

00:00 

12:00 

Output 

Interval (h) 
12 6 6 6 6 6 12 

Forecast 

hour(h) 
120 132 216 120 240 240 192 

  The ensemble spread is an indicator of forecast uncertainties, which is not in linear 

relationship with mean track error. When the spread is large, the mean track error may be 

smaller, and vice-versa. Traditionally, researcher applied scatter plot of position error and 

ensemble spread to analyze the relationship between the forecast uncertainty and the error 

of a particular EPS. A bi-directional scatter plot is adopted here to re-analyze the traditional 

scatter plot. In the bi-directional scatter plot (Fig.8), the blocks in the middle of the plot 

represents the mean value of spread or track error. The lower (left) and upper (right) bars 

represent the 25th and 75th quantile values. It’s found that only the spread of ECMWF-EPS 

are larger than track error, other 4 EPSs’ spreads are smaller than track error. All the EPSs’ 

spans of ensemble spread larger than track error, indicating that the uncertainties of 

ensemble spread are larger than that of track error. 



Fig.8. Bi-directional track forecast scatter plot for ECMWF

The blocks represents the mean value of spread or track error.
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directional track forecast scatter plot for ECMWF-EPS, NCEP-GEFS, JMA-TEPS, JMA-WEPS and UKMO

mean value of spread or track error. The lower (left) and upper (right)

the 25th and 75th quantile values. 

 

 

 

WEPS and UKMO-EPS. 

(right) bars represent 



10 

Fig.9 is schematic diagram of probability ellipse. If the observation TC location appears in 

the corresponding ellipse, it was taken as a hit case. The probability chosen here is 70% (Yu 

et al. 2012). Table.5 shows the mean hit ratio of probability ellipse for all the 7 EPSs at 

different prediction times in 2015. The hit ratio of ECMWF-EPS is much better than other 

EPSs. This may be caused by that the perturbation methods of the remaining EPSs are not as 

close to the realistic weather facts. The hit ratios of NCEP-GEFS and UKMO-EPS are rather 

poor, and it’s partly caused by the underestimate of atmospheric uncertainties. 

  

  

Fig.9 Schematic diagram of 70% probability ellipse for ECMWF-EPS, JMA-TEPS, NCEP-GEFS and JMA-WEPS. The 

stars on the figure are the best-track, and the colorful dots and ellipses are ensemble members and probability 

ellipses for different prediction times. On the upright corner contains the information about model name, TC 

number and start time, corresponding to the blue star. 

 
Table.5 The EPS forecast hit ratio of 70% probability ellipse in 2015 

 12h 24h 36h 48h 60h 72h 84h 96h 108h 120h 

JMA-WEPS 46.9% 55.7% 53.5% 53.3% 51.6% 52.2% 55.4% 53.9% 51.0% 55.7% 

JMA-TEPS 57.2% 74.9% 78.5% 81.8% 64.3% 53.4% 48.1% 43.0% 38.9% 38.6% 

ECMWF-EPS 82.4% 88.7% 89.6% 91.9% 93.2% 92.4% 90.9% 89.3% 91.4% 90.9% 

NCEP-GEFS 56.1% 64.5% 63.4% 64.4% 56.0% 48.8% 44.0% 50.0% 48.4% 43.4% 

KMA-GBEPS 91.2% 89.4% 88.1% 82.9% 81.8% 77.4% 89.7% 82.1% 84.6% 91.7% 

MSC-CENS 72.6% 80.6% 81.6% 75.9% 75.9% 87.1% 80.0% 80.4% 84.1% 84.6% 

UMKO-EPS 53.2% 61.9% 48.7% 40.5% 42.4% 46.2% 54.5% 55.6% 81.3% 78.6% 
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5. TC genesis forecast verification 

 

Fig.10. Binary contingency table of observed versus 

forecast events. 

The focus of tropical cyclone genesis is on whether a disturbance will form into a 

full-fledged TC. Deterministic forecasts of genesis are usually verified categorically as hits, 

false alarms, and misses (e.g., Elsberry et al. 2007). Fig.10 shows the binary contingency 

table which counts the number of hits, misses, false alarms, and correct rejections for a set 

of forecasts (e.g. TC genesis forecasts). These counts, when given as percentages and 

computed for a number of thresholds from small to large (for the verification of TC genesis, 

we use the thresholds of 200, 250 and 300km, respectively), reveal quite a bit about the 

nature of the errors. The verification indices are Critical Success Index (CSI), Probability of 

Detection (POD) and False Alarm Ratio (FAR). Fig.10 shows CSI, POD and FAR of NCEP-GFS at 

different lead time for 200, 250 and 300km thresholds in 2015, respectively. As shown in 

Fig.11, CSI and POD indices decrease according to increasing of lead times, inversely while 

FAR index increases according to increasing of lead times for NCEP-GFS model. It is natural 

due to increasing of model errors according to increasing of lead times. Fig.11 demonstrated 

that NCEP-GFS forecast is of fairly good quality to forecast the genesis of TCs and had been 

making more noticeable. 

 

Fig.11. CSI, POD and FAR of NCEP-GFS at different lead 

time for 200, 250 and 300km thresholds, respectively in 

2015. (Thanks to Pak Sang Il from DPRK) 
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6. TC intensity forecast verification 

6.1 Deterministic forecast 

TC intensity forecasts (i.e., maximum wind speed and minimum pressure) are typically 

evaluated as continuous parameters, using standard verification measures such as the Mean 

Absolute Error (MAE) or Mean Error (ME). MAE provides an indication of the average magnitude 

of the error, whereas ME measures the bias in the forecasts. Table.6 show the MAE of maximum 

wind speed forecast for each method at each lead time level in 2015. One thing should be 

remember that the wind speed of both forecast and best track were converted to 2-min average 

according to the WMO documentation (Harper B A. et al, 2010). 

Table.6. Average absolute maximum wind speed error for each method at 24, 48, 72, 96 and 120h lead time 

levels in 2015 (Unit: m/s) 

Method      
Lead times

 24h 48h 72h 96h 120h 

Subjective 

Methods 

CMA-sub 4.26(640) 6.36(537) 7.72(441) 8.25(359) 9.86(287) 

JMA-sub 5.08(639) 7.94(539) 9.38(447) / / 

KMA-sub 5.03(634) 7.49(536) 8.61(441) 9.55(360) 10.38(287) 

JTWC-sub 4.88(612) 7.17(512) 8.37(426) 8.81(347) 8.63(287) 

HKO-sub 5.04(248) 6.74(189) 7.40(135) 7.08(89) 7.73(51) 

Global NWP 

Models 

ECMWF-IFS 5.44(305) 8.42(261) 10.33(212) 11.19(171) 11.25(135) 

NCEP-GFS 6.42(414) 7.98(355) 9.60(289) 10.43(234) 10.13(188) 

JMA-GSM 6.67(638) 10.61(540) 12.60(443) / / 

CMA-T639 6.78(46) 9.78(36) 12.75(28) 15.40(20) 18.93(15) 

KMA-GDAPS 7.14(207) 12.07(173) 15.08(142) 17.93(116) 19.22(81) 

UKMO-MetUM 6.71(315) 10.35(269) 12.13(223) 13.65(179) 13.49(143) 

Regional NWP 

Models 

BOM-ACCASS 7.20(300) 10.20(254) 11.99(208) / / 

CMA-TRAMS 8.81(252) 9.76(211) 10.05(169) / / 

STI-GRAPES 8.05(423) 9.06(211) 10.28(274) / / 

Some new TC intensity verification mentalities have been on trial for the last 5 year in STI, such 

as plots like those in Fig.12, which is called Taylor Diagram (Taylor, 2001). Taylor Diagram is 

introduced in the verification of TC intensity forecast to analyze the internal relationship between 

the standardized deviation and correlation coefficient together with center different 

root-mean-square. The best prediction always with highest correlation coefficient compared to 

“OBS”, and with standardized deviation and center different root-mean-square closed to “1”. 

According to Fig.12 the RMS error of both minimum surface pressure and maximum wind speed 

were smallest at 0h for JMA. The correlation coefficients of minimum surface pressure between 

observation and forecast are in the interval of 0.6 to 0.9. For the maximum wind speed forecast, 

the normalized standardized deviations of most global models are in the interval 0.75 to 1.25, 

except for KMA-GDAPS. 



Fig.12. Taylor-diagram to evaluate 

Fig.13 shows the intensity forecast skill score at the lead time level

subjective method, global and regional models from 2010 to 2015. All the 

methods obtained positive 

skill scores were much less than track forecast skill scores. More depressing is that intensity 

forecast skill scores for both global and regional models

Fig.13. The same as

6.2 EPS forecast 

  The ensemble forecasts of TC intensity from the TIGGE ensemble prediction systems as 

listed in Table.4 have been evaluated using history ranking 

Probability Score (RPS) and forecast bias estimating 

forecast bias estimating for EPS.

estimated the TC initial intensity, except for ECMWF

13 

 

diagram to evaluate global models’ TC intensity forecast. Left: for maximum wind speed, right: for 

minimum surface pressure. 

shows the intensity forecast skill score at the lead time levels of 24

subjective method, global and regional models from 2010 to 2015. All the 

methods obtained positive intensity forecast skill scores for the last 6 years, however,

much less than track forecast skill scores. More depressing is that intensity 

forecast skill scores for both global and regional models were almost negative.

 

The same as Fig.3 but for intensity forecast skill score. 

nsemble forecasts of TC intensity from the TIGGE ensemble prediction systems as 

have been evaluated using history ranking analyses, Brier Score (BS), 

and forecast bias estimating since 2013 at STI. Fig.14 shows Intensity 

forecast bias estimating for EPS. The evaluation results show that most EPSs were under 

estimated the TC initial intensity, except for ECMWF-EPS. 

 

. Left: for maximum wind speed, right: for 

s of 24 and 48h for 

subjective method, global and regional models from 2010 to 2015. All the subjective 

years, however, the 

much less than track forecast skill scores. More depressing is that intensity 

were almost negative. 

 

nsemble forecasts of TC intensity from the TIGGE ensemble prediction systems as 

analyses, Brier Score (BS), Ranked 

Fig.14 shows Intensity 

The evaluation results show that most EPSs were under 
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Fig.14 Intensity forecast bias estimating for EPS. 

As indicated by the Brier score (Fig. 15), the ensemble system of UKMO-EPS outperforms 

other systems significantly at long lead times. However, BS differences in the seven EPSs have 

narrowed at long lead time levels. The positive contribution of initial correction degrades 

quickly from 6h to 30h for six of the seven systems. The effect of initial correction is 

in-significant or even negative for some systems after 30 h.  

 

Fig.15 Brier scores for EPS intensity forecast in 2015. 
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7. Conclusions 

Verification of TC forecasts is important for improving the NWP and subjective guidance 

that underpins the forecasts, making best use of this guidance in a forecasting context, and 

assisting the public, emergency managers, and other users of the TC forecasts to develop 

an appropriate level of confidence in the forecasts. 

This report has briefly discussed the performance of typhoon forecast over western North 

Pacific in 2015. The verification results include TC genesis, track, and intensity for both 

deterministic and ensemble forecast guidance. The results show that stepped decreases in the 

values of each quantile of track errors were made at every lead time level from 2010 to 

2015 for both deterministic and ensemble NWP guidance, however, intensity forecast skill 

for both global and regional models were almost stagnating for the last six years. 

In the future, for STI, we’ll not only focus on evaluation of basic TC attributes such as 

track, intensity and genesis, but also focus on verifying TC impact variables such as 

precipitation, wind and storm surge. We’ll continue to develop and improve methodologies 

for verifying forecast aspects of TC formation, structure, evolution, and motion, particularly 

from high resolution and ensemble NWP which are now the foundation for most 

operational TC forecasts. 
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Appendix: acronyms used in this report 

BOM Bureau of Meteorology (Australia) 

CMA China Meteorological Administration 

CMC  Canadian Meteorological Center 

CSI  Critical Success Index  

ECMWF European Centre for Medium Range Weather Forecasting 

EPS  Ensemble prediction system 

FAR  False alarm ratio 

GEFS Global Ensemble Forecast System 

GFS  Global Forecast System 

JMA  Japan Meteorological Agency 

JTWC Joint Typhoon Warning Center 

MAE  Mean absolute error 

ME  Mean error 

MSE  Mean Squared Error 

NWP Numerical weather prediction 

POD  Probability of Detection 

RMSE Root Mean Squared Error 

STI  Shanghai Typhoon Institute 

TC  Tropical cyclone 

TIGGE THORPEX Interactive Grand Global Ensemble 

WMO World Meteorological Organization 
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